Linear Differential Operators on Contact Manifolds
نویسندگان
چکیده
منابع مشابه
Linear differential operators on contact manifolds
We consider differential operators between sections of arbitrary powers of the determinant line bundle over a contact manifold. We extend the standard notions of the Heisenberg calculus: noncommutative symbolic calculus, the principal symbol, and the contact order to such differential operators. Our first main result is an intrinsically defined “subsymbol” of a differential operator, which is a...
متن کاملGeometric connections and geometric Dirac operators on contact manifolds
We construct some natural metric connections on metric contact manifolds compatible with the contact structure and characterized by the Dirac operators they determine. In the case of CR manifolds these are invariants of a fixed pseudo-hermitian structure, and one of them coincides with the Tanaka–Webster connection. 2005 Elsevier B.V. All rights reserved. MSC: 53B05; 53C15; 53D10; 53D15
متن کاملInvariant Operators on Manifolds
This paper demonstrates the power of the calculus developed in the two previous parts of the series for all real forms of the almost Hermitian symmetric structures on smooth manifolds, including e.g. conformal Riemannian and almost quaternionic geometries. Exploiting some finite dimensional representation theory of simple Lie algebras, we give explicit formulae for distinguished invariant curve...
متن کاملDifferential Harnack Inequalities on Riemannian Manifolds I : Linear Heat Equation
Abstract. In the first part of this paper, we get new Li-Yau type gradient estimates for positive solutions of heat equation on Riemmannian manifolds with Ricci(M) ≥ −k, k ∈ R. As applications, several parabolic Harnack inequalities are obtained and they lead to new estimates on heat kernels of manifolds with Ricci curvature bounded from below. In the second part, we establish a Perelman type L...
متن کاملRandom Schrödinger Operators on Manifolds
We consider a random family of Schrödinger operators on a cover X of a compact Riemannian manifold M = X/Γ. We present several results on their spectral theory, in particular almost sure constancy of the spectral components and existence and non-randomness of an integrated density of states. We also sketch a groupoid based general framework which allows to treat basic features of random operato...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2016
ISSN: 1073-7928,1687-0247
DOI: 10.1093/imrn/rnv364